Erythropoietin Stimulating Agents in the Management of Anemia Due to Chronic Kidney Disease

Content

1. Background and Objective of the Survey	2
2. Methodology of the Survey	3
3. Literature Review	4
4. Survey Form	34
5. Survey Findings	37
6. Summary	52
7. Consultant Opinion	53

Background and Objective of the Survey

Erythropoietin Stimulating Agents (ESA) play a pivotal role in managing anemia associated with chronic kidney disease (CKD). In individuals with CKD, impaired kidney function leads to reduced erythropoietin production, hindering the normal synthesis of red blood cells and resulting in anemia. ESAs, such as recombinant human erythropoietin, effectively stimulate erythropoiesis, addressing anemia and its associated symptoms. By mimicking the action of endogenous erythropoietin, these agents promote the production of red blood cells in the bone marrow. Tailoring ESA therapy to individual patient needs, considering factors like hemoglobin levels and CKD stage, is crucial for optimizing treatment outcomes. While ESAs contribute significantly to managing anemia in CKD, their use necessitates careful monitoring to prevent potential risks such as cardiovascular events. A comprehensive understanding of the patient's clinical status and judicious administration of ESAs align with best practices for enhancing anemia management in the context of chronic kidney disease.

The objective of the survey is:

To evaluate the role of erythropoietin stimulating agents in the management of anemia due to chronic kidney disease

Methodology of the Survey

A survey was conducted to evaluate the role of erythropoietin stimulating agents in the management of anemia due to chronic kidney disease. A total of 150 doctors from India participated in the survey.

Step 1: A literature search was done on the topic. Below topics were covered in the literature search

- Introduction
- Historical Perspective
- Recombinant Human Erythropoietin
- Mechanism of Action
- Administration of Rhuepo
- Clinical Application of Rhuepo
- Anaemia Associated with Chronic Renal Disease
- Route of Erythropoiesis Stimulating Agents (ESA)
- Route of Administration and Stage of CKD (Non-Dialysis Dependent and Patients on Peritoneal Dialysis vs Haemodialysis Patients)
- Convenience of Drug Administration

Step 2: A survey questionnaire was prepared based on the literature search. The survey form was shared through the digital medium with physicians across India.

Step 3: Their responses were analyzed and the findings are provided in this survey analysis booklet.

Literature Review

Introduction¹

The human body generates 2.5 million new red blood cells (RBCs) per second from the bone marrow to replenish the continuous removal of effete RBCs. The production of RBCs (erythropoiesis) is controlled by an intricate interaction between various humoral factors and cytokines. A specific cytokine, a sialoglycoprotein known as erythropoietin, which acts directly on certain RBC progenitors and precursors in the bone marrow, controls the proliferation, differentiation, and maturation of RBCs. The expression of erythropoietin is markedly increased in kidneys during hypoxic state, a condition mediated by the transcription factor HIF-1. The ultimate effect is to increase erythropoiesis in an attempt to maintain oxygen delivery to vital organs. This article provides an overview of erythropoietin on both historical and scientific aspects, followed by a discussion of its current and potential applications in clinical medicine.

Recombinant Human Erythropoietin¹

Structural and biological characteristics

Erythropoietin in blood is mainly of renal origin, with a small amount derived from the liver. The human erythropoietin gene is situated at chromosome 7q11-22, consisting of five exons and four introns, which produces a post-transcriptional single polypeptide containing 193 amino acids. During the post-translational modification, glycosylation occurs with the addition of three N-linked (at Asn-24, Asn-38 and Asn-83) and one O-linked (at Ser-126) acidic oligosaccharides, the formation of two disulphide bonds at Cys-7 to Cys-161 and at Cys-29 to Cys-33, concomitant with the removal of the 27 amino acid hydrophobic secretory sequence. The Arg-166 at the COOH terminal is believed to be cleaved before the release of erythropoietin into the circulation, with the primary structure of a mature erythropoietin (and hence RHuEPO) containing 165 amino acids (fig 1). The molecular mass of the polypeptide backbone and the glycosylated form of erythropoietin is estimated to be 18 kDa and 30 kDa respectively. Circular dichroism spectral analysis has proposed that its secondary structure contains 50% of α -helix moiety, with spatial arrangement of two α -helical pairs running antiparallel similar to that of growth hormone. The glycosylated (or sugar) moiety of

erythropoietin has an important role in terms of biosynthesis, tertiary structure of the molecule, and in vivo biological activity. The N-glycosylated moiety of RHuEPO has three main functional units: the main core, the branched portion and the terminal component, with each unit having a specific role. The function of the O-glycosylated unit, a component constituting about 3% of the total mass of RHuEPO, remains to be defined. There are currently four different RHuEPOs: alpha, beta, delta, and omega. However, only EPO-alpha and EPO-beta are commercially available in the UK at the moment. Although these RHuEPOs act on the same erythropoietin receptor, there are some variations on the degree of glycosylation which lead to the differences in the pharmacokinetics and pharmacodynamics among the RhuEPOs.

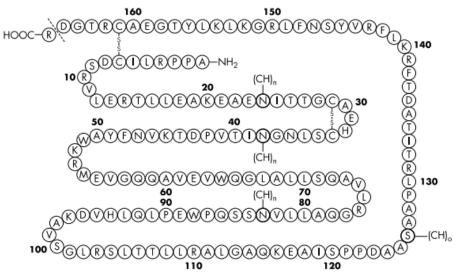
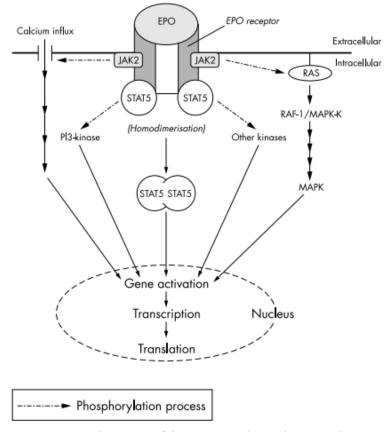


Figure 1 Primary structure of erythropoietin (hence RHuEPO). (CH),, NHinked glycosylation site at aspartyl residues 24, 38, 83; (CH),, O-linked glycosylation site at seryl residue 126. NB: The ARG-166 at the carboxyl terminal is removed before erythropoietin is released into the circulation.

Figure 2 Outline of the functional units from *N*-glycosylation moiety of erythropoietin (EPO).

Aspartyl —	Main core sugar	Branched chain sugar	Terminal sugar
	 Mannose "rich"/GlcNAc structure Maintaining conformation of polypeptide chain 	 GlcNAc branches Supportive function to terminal sugars Conferring stability of EPO in circulation Degree of branching (ratio of tetra-antennary versus biantennary) positively correlating with in vivo biological activity of EPO 	 Containing sialic acids, repeating units of poly-N-acetyllactosamine, and galactose Correlating to EPO receptor binding and interaction with other molecules Directly correlating with in vivo biological activity of EPO

Modifications of RHuEPO


As the N-glycosylation confers the biological activity of RHuEPO, an increase in the number of glycosylation sites may enhance its activity. A hyperglycosylated RHuEPO, known as NESP (novel erythropoiesis stimulating protein; Darbepoetinalpha) has recently been introduced. By using a process called "site mutagenesis", the polypeptide backbone of the RHuEPO is modified, leading to the creation of five N-glycosylation sites (compared with three in RHuEPO).

Compared with the RHuEPOs, NESP has a higher negative charge and a threefold longer half life. It requires a less frequent dosing schedule and produces a similar clinical outcome and safety profile as RHuEPOs in treating anaemia of chronic renal disease and of malignancy. The applicability of NESP in other clinical conditions is currently being evaluated.

Another strategy to enhance the biological activity of RHuEPO is to provide a "protective vehicle" so as to decrease the rate of elimination, thus prolonging the half life of RHuEPO. Methods such as microencapsulation and pegylation to RHuEPO are currently being assessed.

Mechanism of action¹

Erythropoietin is essential for the proliferation, differentiation, and maturation of RBCs in bone marrow. Moreover, erythropoietin is critical for the survival of RBC progenitors in bone marrow and may also have immunomodulatory activity. Erythropoietin functions by binding to the erythropoietin receptor: a 72–78 kDa glycosylated and phosphorylated transmembrane polypeptide. The erythropoietin receptor is a member of the superfamily of cytokine receptors. The number of erythropoietin receptors varies during RBC differentiation, with its peak presentation at the colony forming unit-erythroid/proerythroblastic stage and the level being undetectable at the reticulocytes. The binding of erythropoietin to its receptor results in homodimerisation of the receptor, followed by activation of several signal transduction pathways: JAK2/STAT5 system, G-protein (RAS), calcium channel, and kinases (fig 3).

Figure 3 Simplistic view of the main signal transduction pathways activated by the erythropoietin (EPO) receptor.

Administration Of Rhuepo¹

Route of administration

Both intravenous and subcutaneous administrations are commonly used to deliver RHuEPO to renal patients. Clinical studies have demonstrated that the subcutaneous route offers a few advantages over intravenous administration. For instance, subcutaneous administration is more convenient as it does not require any venous access. When compared with the intravenous route, subcutaneous RHuEPO administration significantly prolongs the increase of serum erythropoietin, thus sustaining the stimulation of erythropoiesis. Furthermore, up to 30% reduction in total weekly RHuEPO dosage on haemodialysis patients could be achieved to maintain the same haemoglobin level when switching intravenous to subcutaneous administration. Intraperitoneal administration of RHuEPO could be an alternative for the subcutaneous route but it is mainly applicable to renal patients receiving peritoneal dialysis. A larger dose of RHuEPO may be required to maintain the same haemoglobin level if RHuEPO has to be applied intraperitoneally.

As there is an increasing concern of pure red cell aplasia associated with subcutaneous EPOalpha administration to renal patients, the Department of Health in UK recommends a change in the route of EPO-alpha administration from subcutaneous to intravenous. However, it remains uncertain whether similar measure will be applied to the other recombinant erythropoietins.

Outside the uraemic setting, both intravenous and subcutaneous RHuEPO have been employed but the subcutaneous route was used in the majority of the studies. However, there have been no studies to compare the efficacy of these routes.

Frequency of administration

Both intravenous and subcutaneous RHuEPO can be given from once daily to thrice, twice and once weekly in renal patients, depending on the clinical status of the patients. Similar differences in the frequency of RHuEPO administration have been applied in various non-uraemic conditions.

Clinical Application Of Rhuepo¹

RHuEPO has revolutionised the treatment of patients with anaemia of chronic renal failure. Moreover, RHuEPO has been shown to be effective in correcting anaemia associated with various non-uraemic conditions (box 1).

Table 2: Clinical applications of RHuEPO

Anaemia associated with chronic renal disease¹

Chronic renal failure on maintenance dialysis

Patients with chronic renal failure have subnormal endogenous erythropoietin production. Clinical studies have shown that RHuEPO therapy corrects the anaemia of chronic renal failure, avoids blood transfusions and improves quality of life. Furthermore, it optimises a patient's haemodynamic status thus minimising the risk of progression to left ventricular hypertrophy and its associated mortality. Furthermore, it leads to an improvement of physical performance and cognitive function.

Patients at pre-dialysis stage

A review published in 1995 suggested that pre-dialysis patients (and those with failing renal allografts) would gain no benefit from RHuEPO therapy if glomerular filtration rate was less than 15 ml/min but there would be a risk of accelerating to end stage renal failure. However,

recent clinical studies have failed to confirm these negative effects of RHuEPO. In fact, a metaanalysis on published data involving 12 randomised studies with more than 200 pre-dialysis patients during the period 1980–2001 has shown that early treatment with RHuEPO corrected anaemia, avoided blood transfusion, and improved the quality of life and exercise capacity. Although there was an increase in the requirement for antihypertensive therapy, no statistically significant increase in adverse events was otherwise found. There was also no evidence to suggest that RHuEPO therapy hastened a deterioration of renal function, though the authors conceded that the duration of RHuEPO therapy in most of the trials might not be long enough to confirm the benefit. Early application of RHuEPO has been shown to reduce the risk of cardiovascular events and the associated mortality. The addition of intravenous iron may decrease the dosage requirement of RHuEPO and could provide an additive and rapid effect in the correction of renal anaemia during the pre-dialysis period.

Patients with renal transplant

Unfortunately, there are insufficient clinical data to discuss in details the use of RHuEPO in the transplant setting. The avoidance of pre-transplant blood transfusion may impair the success of graft survival in patients receiving a cadaveric transplant, according to collaborative transplant studies. Furthermore, there are concerns that an increase in packed cell volume during renal transplant may predispose the patient to develop graft thrombosis and delayed graft function. Muirhead reviewed the current data and highlighted several issues. Firstly, there was no convincing evidence of delayed graft function or graft thrombosis in patients previously treated with RHuEPO. Secondly, the use of RHuEPO might reduce allosensitisation as a result of random blood transfusion while allowing the benefits of graft survival from deliberate transfusion. Thirdly, the correction of posttransplant anaemia was enhanced and hastened by RHuEPO therapy. Fourthly, the effect of RHuEPO was minimal during an acute episode of graft rejection but its benefit resumed once successful treatment of the rejection episode had been achieved. Finally, despite the use of immunosuppressants, patients with failing grafts had a similar response to RHuEPO compared with those on dialysis. A recent study in Sweden has shown that pre-transplant correction of haemoglobin reduced the necessity of postoperative blood transfusion with no evidence of worsening the transplant outcome.

Route of erythropoiesis stimulating agents (ESA)²

The major factors that govern the route of ESA administration include the patient's stage of CKD, efficacy considerations, the type of ESA used, dosing frequency, convenience, healthcare costs, and drug safety and tolerability. This literature review aims to discuss the existing, relevant literature for these factors with respect to the route of ESA administration and to define areas that need further exploration.

Dosing Frequency

Numerous studies and trials have documented evidence strongly suggestive of the advantages that the SC route of erythropoietin administration has, in terms of requiring a lower dose and frequency of administration, over the IV route (see Table 3).

Table 3. A summary of studies comparing dosing frequency between intravenous and subcutaneous routes of administration of erythropoietin

HD: Haemodialysis, SC: Subcutaneous, IV: Intravenous, Hb: Haemoglobin, r-HuEPO: Recombinant Human Erythropoietin, ESRD: End-stage Renal Disease.

Serial Number	Author/Year	Study Design	Population	Relevant Conclusive Points
1	Muirhead et al. / 1992	Clinical Trial	128 adult HD patients selected from five dialysis centers, 45 patients withdrew due to various reasons. 45 patients were in the subcutaneous group (SC) and 38 in the intravenous (IV) group.	Mean dose at stabilization of Hb levels, time to achieve target Hb levels and time to stabilization of Hb levels of rHuEPO were all significantly lower in the SC compared to the IV group.

2	Wright et al. / 2015	Comparative Study (retrospective cohort)	62,710 adult HD patients enrolled in the Centers for Medicare and Medicaid Services ESRD Clinical Performance Measures Project from 1997 to 2005 were treated with epoetin, of which 57,602 patients received IV and 5108 received SC epoetin.	IV epoetin doses were on average 25% higher than the SC dose for achieving equivalent haemoglobin responses in study patients. Adverse outcomes on follow-up were also found to be significantly more likely in HD patients receiving IV rather than SC epoetin.
3	Vercaigne et al. / 2005	Clinical Trial	98 adult HD patients already on maintenance SC epoetin therapy enrolled into study and all patients were shifted to IV epoetin simultaneously for the prospective study of anemia. 34 patients withdrew at different stages due to various reasons. 64 patients took part in study.	SC dosage whilst also resulting in a significantly lower mean Hb level.
4	Moist et al. / 2006	Comparative Study	414 adult HD patients participated in this study, which was essentially a wide-scale	The mean weekly, weight-adjusted dose of IV epoetin was found to be 20.2%

		(prospective cohort)	policy implementation for a change from the maintenance SC epoetin administration route to the IV route. All patients were shifted simultaneously to the IV route. 111 patients withdrew from the study due to various reasons.	higher, on average, than the baseline SC dosage. This was most pronounced at 6 and 12 months of follow-up. Patients receiving epoetin 3 times per week increased from 19.6% at baseline, with SC administration, to 79.5% at 12 months of IV epoetin.
5	Galliford et al. / 2005	Comparative Study (prospective cohort)	86 adult HD patients were studied on a monthly basis for 6 months before and after a change in the route of administration from SC epoetin-alfa to IV epoetin-alfa.	Hblevelsfellsignificantly in the firsttwo months after theswitchfromSCepoetin-alfatoIVepoetin-alfatoIVepoetin-alfaadministration.Thiseffectwaspartiallyoffset at 6 months by anincrease of IV epoetin-alfa dose by 32% alongwithanincreaseinincreaseendincreasein
6	Steffensen et al. / 2011	Randomized Controlled Trial (Open, multicentre Crossover study)	145 adult HD patients, already on SC Epoetin, were randomized to one of two epoetin treatment groups. The groups either involved treatment with IV	Provided that iron stores are optimal, there is no significant difference in mean Hb levels and mean EPO doses between IV and

			epoetin for 4 months followed by SC administration for 4 months or vice versa. Routine iron studies were carried out during study and supplemented	SC administration of epoetin-beta.
			as needed.	
7	Parker et al. / 1997	Clinical Trial	44 adult chronic HD patients from a dialysis unit, already on IV Epogen (r-HuEPO, Epoetin-alfa), were selected for this study and subjected to an approved treatment protocol comprised of 3 phases with different routes and doses of Epogen administration. 27 patients completed the protocol over 22 months. 135 "control" subjects were matched during the protocol from another group of dialysis patients refusing to opt for SC r- HuEPO.	weekly SC EPO doses that are one-third of the required weekly IV dose thereby lending support to its safety and efficacy. Patient safety, serum biochemistry, blood pressure and red blood cell indices were also monitored during the study, with no

Drug Safety and Tolerability²

As with any other drug, recombinant Human EPO (r-HuEPO) or epoetin carries with it a certain set of side effects. While both IV and SC share some of these adverse effects, the extent and frequency differ between the two (see Table 4). Common to both routes include injection site pain sensation, the development of hypertension, arteriovenous fistulae thrombosis, an increased overall risk of thrombotic and cardiovascular as well as cerebrovascular events, hyperkalemia, depletion of iron stores, flu-like symptoms, a prolonged duration of dialysis and rarely, PRCA and seizures.

Table 4. A summary of studies comparing erythropoietin safety profile and tolerance between intravenous and subcutaneous administration

HD: Haemodialysis, SC: Subcutaneous, IV: Intravenous, Hb: Haemoglobin, rHuEPO: Recombinant Human Erythropoietin, ESRD: End-stage Renal Disease, AE: Adverse events, EPO: Erythropoietin, PRCA: Pure Red Cell Aplasia

Serial Number	Author/Year	Study Design	Population	Relevant Conclusive Points
1	Lee et al. / 2009	Randomized Controlled Trial	78 adult HD patients were randomly assigned to either receive IV or SC epoetin. The time to Vascular access failure was analysed. Seven patients were withdrawn from evaluation due to various reasons.	Patients in the SC therapy group exhibited a significantly higher rate (12.0%/patient year) of access failure as compared to the IV epoetin group (4.7%/patient year). The study was limited, however, by a small sample size and asymmetry between the two groups.

2	Klinkmann et al. / 1992	Clinical Trial (Prospective, Multi-center study)	362 adult HD patients from 16 European dialysis centers enters study with half study with half the patients receiving receiving (first phase) of trial and then serving as the quring the second year (second phase) and the other year (second phase) and followed the the opposite treatment phan. plan. These patients for SC administered for patients dropped out from from the study. atters from the study.	Adverse events (AE) were recorded in the two groups, as serious and non-serious. AE were higher in the SC therapy group (55.9%) compared to the control group (44.1%), with serious AE being slightly higher in the therapy group. Statistically however, there was no significant difference two groups in terms of serious serious AE like hypertension, loss of serious respiratory and gastrointestinal system- related issues. Death due to cardiac issues was higher in the control group. NO anti-EPO antibodies were detected in either group. SC EPO administration afety profile than IV EPO.
3	1994	(Randomized, double-blind,	already suffering from ESRD, were	patients exhibited hypertensive

				· _ · _ 1
		Prospective,	enrolled and	reactions. During the Hb
		Multi-center	randomly assigned	and hematocrit
		study)	to 4 different	correction phase, there
			groups, 2 of which	were more patients
			comprised of IV	becoming hypertensive
			EPO therapy and the	with SC EPO therapy
			other 2 SC EPO	than with IV EPO. This
			therapy. The study	was not the case during
			involved 4 different	the maintenance phase of
			phases of treatment.	treatment, however, SC
				EPO-treated patients did
				not complain about
				injection site pain and
				adverse reactions. The
				relationship between
				EPO treatment,
				development of
				hypertension and route of
				EPO administration is
				complex and
				multifactorial.
			Existing patient data	EPO hyporesponsiveness
			and serum samples	has numerous causes,
			from 1677 patients	prominently infection,
			-	
			participating in The	
4	Kharagjitsingh	Multi-center	Netherlands	depletion of iron stores.
et al. / 2005	Cohort study	Cooperative Study	1	
			on the Adequacy of	
		Dialysis-2	an estimated incidence of	
			(NECOSAD-2)	16.7/1000 patient years
			were used in this	on EPO while on
			study. Data was	dialysis. Only one patient

			collected at 6-month intervals between April 1997 and September 2002. The study was performed to detect EPO hyporesponsive patients, EPO antibodies and PRCA in dialysis patients.	patients was found to have clinical PRCA, an estimated incidence of 0.29/1000 patient years on EPO while on dialysis. The incidence of EPO antibodies stood at 1.27/1000 patient- years since the start of
5	Navarro et al. / 1995	Clinical Trial	13 chronic haemodialysis patients, who remained hypertensive after being on long term (>12 months), thrice weekly, post HD IV rHuEPO therapy were selected for	month of the switch to SC rHuEPO, there was a significant drop in pre- dialysis mean arterial pressure as opposed to baseline pressures, prior to the switch. The number of hypertensive

this study, with	at the time of baseline
hypertension being	recording to 8 at the end
defined as elevated	of the six-month trial. In
blood pressure that	the remaining 8
necessitated the use	hypertensive patients, the
of anti-hypertensive	severity dropped
medications. These	significantly as was
patients were	measured by a
switched to SC EPO	"therapeutical score" that
thrice weekly for 6	assessed hypertensive
months, whilst	severity from the
keeping the total	antihypertensive power
weekly SC dose at	of the drugs used to
two-third of the	control it. This study
weekly IV rHuEPO	shows better control of
dose. Their blood	hypertension with the SC
pressure was	route of administration in
monitored prior to	ESRD patients and that
each HD session.	SC rHuEPO doesn't
Patient's	prevent hypertension in
hypertensive	ESRD patients, rather
therapy and red	only reduces its severity
blood cell indices	compared to the IV route.
were also analysed	
regularly.	

Drug-associated Costs²

Patients with severe anemia secondary to CKD < Hb 9.0 gm/dl and those with advanced CKD, for example those on regular HD, need prolonged periods of ESA therapy to improve their QoL, to prevent anemia-related symptoms, and to minimize the need for blood transfusion. This can incur significant recurring costs on individuals and on healthcare systems. Dealing

with this by employing a cost effective yet efficacious means of ESA therapy is therefore crucial (see Table 5).

Table 5. A summary of studies comparing healthcare costs between intravenous and subcutaneous EPO administration

HD: Haemodialysis, SC: Subcutaneous, IV: Intravenous, EPO: Erythropoietin, CKD: Chronic Kidney Disease, CAD: Canadian Dollars

Serial Number	Author/date	Study design	Population	Main points
1	Wazny et al. / 2013	Retrospective Multicenter Study	Patients were chosen from 4 in-centre Haemodialysis Units in Winnipeg, Manitoba, Canada. Patients were treated with Epoetin-alfa in two separate treatment regimes in two separate time periods - each lasting 6 months. 622 individuals were subject to on IV EPO (period 1), and 609 individuals to SC EPO (period 2). Costs were analysed retrospectively from available patient data and monthly inventory billing records.	The switch from IV to SC EPO across 4 haemodialysis units, resulted in a 12.6% dose reduction and saved 98% of the patients receiving SC epoetin alpha, about 1125 USD per person per year.
2	Galliford et al. / 2005	Comparative Study	86 adult HD patients, already on SC EPO-alfa treatment, were switched	TransitioningfromSC to IV EPO alphainHDpatients

		(prospective cohort)	simultaneously to IV EPO-alfa, at the same weekly dose as their SC administration, for a period of 6 months. Monthly Red cell indices, weekly EPO dosages and other parameters were monitored during the study.	increase of around one-third, possibly resulting in an annual increase in cost of £
3	McFarlane et al. / 2007	Controlled Clinical Trial	158 adult, chronic, HD patients, already on IV EPO therapy, were studied for 1 year prior to the trial. In the study that spanned 12 months, patients were collectively shifted to SC EPO therapy.	median rise in costs over the whole 6-
4	Prasad et al. / 2020	Retrospective Observational Study	Two hundred and fifteen patients aged more than 18 years, receiving in- center HD for at least 6 months at 4 HD centers. Patients suffering from anemia of CKD requiring epoetin alfa therapy, and on IV epoetin alfa therapy for at least 6 months, were switched to SC EPO-alfa.	Administering epoetin alpha subcutaneously resulted in a dose reduction from IV to SC of 30.51% and 25% reduction in EPO costs, being equally effecting at

	Data was collected from 6	maintaining Hb levels
	months prior to 12 months	in patients on HD.
	after the switch. Primary	
	outcome was the	
	assessment of epoetin-alfa	
	cost per patient per month	
	before and after the policy	
	change.	

Drug Efficacy²

There are various factors that underpin ESA efficacy, i.e., the dose needed to attain a certain target Hb concentration or hematocrit level, which can be adequately summarized under the umbrella of individual ESA pharmacokinetics and pharmacodynamics. Discussed further are factors that have been found relevant to ESA efficacy. Numerous studies have provided support to the SC route of administration due to multiple advantages over the IV route, most notably a lower overall dose to achieve a similar target Hb concentration as well as hematocrit levels and a reduced dosing frequency, i.e., the SC route offers more efficacy for administration of r-HuEPO. Although the SC route offers a much lower level of bioavailability as compared to the IV route, it results in a significantly longer half-life, attaining peak plasma levels that are substantially lower than the IV route but persist for a much longer period of time. The reasons theorized behind this low bioavailability but a paradoxically prolonged maintenance of modest serum plasma levels can be attributed to a multiple injection site, drug inherent and systemic factors. This persistence and delayed absorption of EPO from SC administration has been pivotal in the explanation for this route's effectiveness over the IV route. As erythropoiesis is not as dependent on peak plasma EPO levels as it is on the maintenance of EPO levels above a critical threshold for a prolonged time duration, the SC route offers an advantage. IV EPO dosing results in a fall in serum r-HuEPO levels during the interdialytic period and ultimately in the apoptosis of EPO-dependent erythrocyte precursor cells in the bone marrow. SC EPO dosing prevents this apoptosis due to maintenance of plasma EPO levels for a longer duration therefore enabling a more protracted, efficient and effective process of erythropoiesis.

Table 6. A brief summary of studies comparing erythropoietin pharmacokinetics between intravenous and subcutaneous administration

HD: Haemodialysis, PD: Peritoneal Dialysis, CAPD: Continuous Ambulatory Peritoneal Dialysis, SC: Subcutaneous, IV: Intravenous, IP: Intra-peritoneal, Hb: Haemoglobin, EPO: Erythropoietin, rHuEPO: Recombinant Human Erythropoietin, ESRD: End-stage Renal Disease, rcEPO: Recombinant Human Erythropoietin, C_{max} : Peak serum drug concentration, $t_{1/2}$: drug half-life, S.D.: Standard Deviation

Serial Number	Author / Year	Study Type	Population	Relevant Conclusive points
1	Brockmöller et al. / 1992	Prospective study	12 adult, chronic, stable HD patients, already under treatment with a thrice weekly IV rcEPO, were subjected to treatment scheme using regimes of IV and SC rcEPO recombinant human EPO (rcEPO) injections in discrete phases to assess pharmacokinetics and therapeutic response to both routes. Serum analyses were carried out at specific time intervals for achieving the goals of this study.	After first dosing with IV EPO, plasma EPO levels were found to have a mean $(\pm S.D.)$ half-life of 5.4 ± 1.70 hours compared to initial SC EPO administration with a mean $(\pm$ S.D) absorption time being 22 ± 11 and an average bioavailability of 44% (28-100%). With continuous long-term treatment with IV EPO, elimination half- life reduced by 15% to around 5 hours, possibly a reflection of an increase in hematocrit. The study suggests that the SC route be more effective

			Two groups of adult,	due to prolonged plasma rcEPO elevation following SC administration, with the exact mechanism being unclear. After IV rhEPO injections at the lower dose, the mean half- life was found to be
2	Nielsen / 1990	Clinical Trial	chronic, and stable HD patients were enrolled. Group 1 was already under maintenance treatment with IV recombinant human EPO (rhEPO) thrice weekly. Group 2 included ESRD patients not previously treated with rhEPO. Both groups were subjected to IV and SC rhEPO administration at different dosages – 50 U/kg for group 1 and 150 U/kg for group 1 and 150 U/kg for group 2. Pharmacokinetic studies were then carried out using serum analytics.	5.4 \pm 0.90 hrs, while at the higher dose it was around 7.60 hrs. Peak serum EPO levels (Cmax) after IV dosing were found to be 20 times that of SC Cmax. Peak serum EPO levels after SC dosing were reached on an average of 27.3 \pm 8.6 hrs. Mean bioavailability was also found to be a meager 14.1% after SC dosing. Despite the data, the protracted maintenance of rhEPO levels after SC administration may be more efficacious than

			29 adult, chronic, and stable	IV dosing though more work is needed in this area and patients with SC administration need to be closely monitored for anti- EPO antibodies. Peak plasma levels after IV dosing were
3	Neumayer et al. / 1989	Clinical Trial	HD patients, were enrolled and split into 3 groups. Group I comprised of 19 patients who were treated with IV rhEPO initially, then kept on maintenance therapy for 3 months and thereafter 10 patients from this group, making up group II, were subject to another bolus dose of IV rhEPO at the end of these 3 months. Group III was made up of 9 additional patients who were treated with a single SC rhEPO dose. Pharmacokinetic profiles of these two administration routes at different stages of treatment was then assessed using serum studies.	seen within 5 minutes of administration and were not significantly different between Group I and II. IV rhEPO elimination half-life was found to be an average of 8.75 (7.29 - 11.68) hours, in Group I, but fell significantly after 3 months, i.e. in Group II, to 6.80 hours. SC rhEPO peak levels, though 5% that of IV levels, were attained between 18-24 hours after administration, with a mean half-life of 11.2 (7.0-13.9) hrs. SC bioavailability was also low at around 25%. The study

				questions the benefitof reaching high peakserumlevelsimmediately after IVadministrationandprovides support to arelatively low dose SCadministrationasmimickingEPOphysiological levels inaugmentingerythropoiesis.Cmax for the IP and SCroutesarealmost
4	Ateshkadi et al. / 1993	Clinical Trial	8 stable peritoneal dialysis (PD) patients participated in a randomized, single-dose, three-way cross-over study with Continuous Ambulatory PD (CAPH) being carried throughout the study. Patients were already using EPO or candidates for it. They were given a single average dose of 99.1 U/kg of intraperitoneal (IP), IV, and SC rhEPO. Pharmacokinetics of the three routes were compared using serum analysis studies.	routes are almost identical but only 5% of the IV route. Peak plasma concentrations (C_{max}) were attained at a mean of 9.4 ± 1.90 hrs for the IP route, compared to a much slower time for SC, at 17.1 ± 5.0 hours. However, SC bioavailability, 22.81%, was twice that of IP EPO, 11.4%. Compared to the IP route, the SC route had a significantly higher area-under-the-curve (AUC) between 0 and

				96hoursafteradministration.Thestudy also found thepotential effect of EPOadministration into a"dry"oremptyperitoneum for greaterefficacy via this route,albeitsignificantlylesserthan the SCroute.Administrationstrategiesinvolving amoreprolongedabsorptionwith arelativelylowCmax may enablemoreefficacy of rhEPO.
5	Macdougall et al. / 1989	Clinical Trial	8 adult, stable, chronic CAPD patients were enrolled. Each patient was administered intraperitoneal (IP), IV, and SC rhEPO at a set dose for each route. The doses were spaced by 4 weeks.	IVadministrationexhibited a serum peaklevel being attained at15minutesadministration, with amean half-life $(t_{1/2})$ of8.20 (6.20 - 10.20) hrs.IP administration sawCmax at 12 hours and anaverage bioavailabilityof 2.90% (1.2 - 6.8%).Cmax forSCadministration was at18 hours and had ameanbioavailability

· · · · · · · · · · · · · · · · · · ·	
	of 21.5% (11.3 -
	36.0%). The study
	found that $t_{1/2}$ for IV
	EPO in CAPD patients
	was not significantly
	different from those on
	HD. The findings of
	the study also suggest
	that high serum peaks
	of EPO are of little
	therapeutic value for
	effective
	erythropoiesis. As a
	result, it suggests that
	SC route of
	administration may be
	more beneficial in both
	CAPD and HD
	patients. The
	bioavailability of this
	route, however, is
	governed by a
	complex interplay of
	injection site, drug
	composition and
	systemic factors.

Route of Administration and Stage of CKD (Non-Dialysis Dependent and Patients on Peritoneal Dialysis vs Haemodialysis Patients)²

Non-dialysis CKD patients with preserved GFR, or those undergoing peritoneal dialysis, benefit from SC administration of ESAs, considering that it's least invasive and can be carried out without any monitoring. Furthermore, intraperitoneal administration in patients on

continuous ambulatory peritoneal dialysis (CAPD), can dilute ESA concentration, limiting its use. The advantage of IV administration lies in the fact that it can be conveniently administered during the process of haemodialysis. Numerous studies have shown that SC doses of ESAs in non-dialysis dependent and patients on peritoneal dialysis, were found to effectively increase Hb concentrations and were well-tolerated and may even be more efficacious than IV EPO formulations in HD patients as well. However, more work needs to be done comparing the efficacy of SC versus IV EPO administration in non-dialysis and patients on continuous ambulatory peritoneal dialysis (see Table). The use of EPO in HD patients has been covered under other sections.

Table 7. A comparison of the different routes of ESA administration with the stage of CKD (Non-dialysis dependent AND Patients on Peritoneal Dialysis vs Haemodialysis patients)

HD: Haemodialysis, PD: Peritoneal Dialysis, CAPD: Continuous Ambulatory Peritoneal Dialysis, SC: Subcutaneous, IV: Intravenous, Hb: Haemoglobin, EPO: Erythropoietin, r-HuEPO: Recombinant Human Erythropoietin, ESRD: End-stage Renal Disease, CKD: Chronic Kidney Disease, QoL: Quality of Life

Serial Number	Author/date	Study Design	Population	Main Points
1	Hughes et al. / 1990	Randomized Controlled Trial	15 adult ESRD patients, on CAPD for the treatment of ESRD were enrolled in this study. They were subjected to treatment with r-HuEPO thrice weekly SC, with two separate target Hb levels in two discrete phases – the correction	Thriceweeklyadministrationofr-HuEPOtosubjectsonperitonealdialysiseffectivelycorrectedrenalanemia.Areductionin ineffectiveerythropoiesisand muchmoreimportantly,anincreaseinerythroidactivitywasthoughttobethemajorfactorin

			phase and the maintenance phase.	increasing red cell volumes. The findings of this study also suggested that prolonged, moderate increase in serum EPO concentration is more important than a sudden rise in EPO as would be observed with IV EPO administration.
2	Montini et al. / 1993	Multi-center Study	24 children, suffering from anemia secondary to ESRD and on peritoneal dialysis, aged 3 months to 18 years, were treated with SC r- HuEPO, in varying doses, depending on the Hb levels achieved with each dose.	of 6.5 (4.7-7.9) gm/dl to 9.4 \pm 1.7 gm/dl. The IV route of administration is less convenient in patients on peritoneal dialysis because of lack of vascular access and difficult self-treatment,
3	Trivedi and Brooks / 2003	Comparative Study (retrospective)	31 pre-dialysis CKD patients' medical record was assessed. These patients had been treated with EPO	

			between	1996	and	treatment and to 37.7 \pm
			2001.	Va	rious	4.5% after about 3
			parameters	s	were	months of treatment. By
			assessed	inclu	uding	analyzing a variety of
			renal funct	tion, ree	d cell	other parameters as well,
			indices,	and	iron	the study importantly
			profiles.			concluded that pre-
						dialysis CKD patients
						exhibited significant
						response to EPO therapy
						without parenteral iron
						therapy. It was also
						evident that pre-dialysis
						CKD patients had lower
						overall EPO dosage
						requirements than ESRD
						patients. However, it is
						important to note that
						these findings are similar
						to the ones in ESRD
						patients. More work is
						specifically needed in
						pre-dialysis patients for
						analyzing dose
						requirements among the
						two routes.
			Sixteen	an	nemic	15 patients responded to
			patients wi	ith an H	lb < 9	treatment with a rise in
4	Stevens et	Clinical Trial	gm/dl, ma	aintaine	d on	Hb concentration of
	al. / 1991		chronic	contir	nuous	more than 2 gm/dl. SC
			ambulator	y perit	oneal	administration was found
			dialysis (C	CAPD),	were	to be acceptable,

٤	given SC epoetin-alfa	convenient more
t	thrice weekly, in two	effective in treating
c	different phases – each	anemia in CAPD
x	with a higher Hb level	patients. It was also
t	target than the	associated with an
I	previous one. The dose	improved QoL and can
	of SC EPO was	very well be thought of
c	changed periodically,	as an optimal route of
	depending upon the	EPO administration in
r	results of red-cell	CAPD patients.
i	indices and target Hb	Additionally, in the same
1	levels.	dialysis unit, it was
		found that CAPD
		patients required a lower
		dose via the SC route
		than HD patients did via
		the IV route for
		maintaining target Hb
		levels.

Convenience of Drug Administration²

Between the two routes, convenience depends on factors like the stage of CKD, the dose and dosage frequency, the type of ESA being used, ease-of-use, the type of dialysis being utilized, the associated healthcare costs, and patient satisfaction.

For non-HD patients, the SC route may be more generally convenient due to the lack of a continuous IV access, the ease of self administration, comparatively lower dosage, less frequent hospital visits, a reduced dosing frequency and ultimately reduced costs. Even in HD patients, the SC route has been tied to similar advantages and may therefore be more beneficial overall as compared to the IV route, despite the obvious convenience that an arteriovenous fistula confers to IV EPO administration. This may be particularly beneficial in low-income countries where affordability and access to newer, longer acting ESAs may be difficult. Evidence lending

support to the efficacy, cost effectiveness and safety of the SC route of ESA administration has been presented in earlier sections.

A multicenter study, non-randomized, open-label study conducted by Grzeszczak et al. in 128 stable, chronic PD patients already on once to thrice-weekly SC EPO administration who were enrolled in a study where the effect of shifting them to once-weekly and once-fortnightly administration of SC Epoetin-beta in maintaining their Hb concentrations, was investigated. The findings concluded that shifting patients to SC Epoetin-beta once-weekly did not result in a significant change in mean Hb levels over a period of 25 weeks. In the once-fortnightly group, the dose needed to be increased slightly and even then, more than 50% of patients could still be maintained on baseline EPO-beta doses or lower. This study paves way for a means of ESA administration that could result in greater convenience, compliance, patient satisfaction, reduced dosage frequency and greater cost savings.

References:

- Ng T, Marx G, Littlewood T, Macdougall I. Recombinant erythropoietin in clinical practice. *Postgrad Med J.* 2003;79(933):367-376.
- Shahab MH, Saifullah Khan S. Erythropoietin Administration for Anemia Due to Chronic Kidney Disease - Subcutaneous OR Intravenous, What Do We Know So Far?. *Cureus*. 2020;12(9):e10358.

Survey Form

1) In your clinical practice, what % of non-dialysis CKD patients present with anemia?

- a) 20-40%
- b) 41-60%
- c) 61-80%
- d) >80%

2) In your practice, what % of dialysis patients present with anemia?

- a) 20-40%
- b) 41-60%
- c) 61-80%
- d) >80%

3) What is your preferred type of Erythropoetin Stimulating Agent (ESA) in nondialysis dependant CKD patients having anemia?

- a) Recombinant Human Erythropoietin (rEPO)/Epoetin-alfa
- b) Darbepoetin-alpha
- c) PEGylated EPO

4) What is your preferred type of Erythropoetin Stimulating Agents (ESAs) in dialysis dependant CKD patients having anemia?

- a) Recombinant Human Erythropoietin (rEPO)/Epoetin-alfa
- b) Darbepoetin-alpha
- c) PEGylated EPO

5) Which route of administration for giving ESA is preferred by you in nondialysis CKD patients with anemia?

- a) Intravenous (IV)
- b) Subcutaneous (SC)

6) Which route of administration for giving ESA is preferred by you in dialysis CKD patients with anemia?

- a) Intravenous (IV)
- b) Subcutaneous (SC)

7) At what levels of Hemoglobin (Hb), do you initiate treatment with ESAs in non-dialysis CKD patients?

- a) < 10 g/dl (100 g/l)
- b) < 9 g/dl (100g/l)
- c) < 11 g/dl (110g/l)

8) At what levels of Hemoglobin (Hb), do you initiate treatment with ESAs in dialysis CKD patients?

- a) Between 9-10 g/dl (90-100g/l)
- b) < 9 g/dl (90g/l)
- c) < 10 g/dl (100 g/l)

9) At what % TSAT levels, do you initiate treatment with ESAs in your patients?

- a) >20%
- b) >30%
- c) >40%

10) At what serum ferritin levels do you initiate the treatment with ESAs in your patients?

- a) $>100 \ \mu g/L$
- b) 150 μ g/L
- c) $200 \ \mu g/L$

11) How do you decide the frequency of ESA administration in your patient?

- a) Based on CKD stage
- b) Treatment setting
- c) Patient's preference
- d) Patient's tolerance
- e) Type of ESA
- f) Cost of ESA

12) What according to you are the factors why darbepoetin is preferred in nondialysis dependant CKD patients?

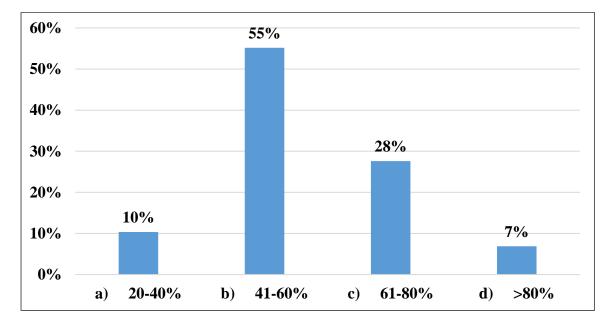
- a) The ease of self-administration (SC route)
- b) Comparatively lower dosage
- c) Less frequent hospital visits
- d) Reduced dosing frequency and ultimately reduced costs
- e) Do not agree to this statement

13) Do you observe reduced need of ESAs dose in your patients treated with IV iron/ferric carboxymaltose?

- a) Yes
- b) No

14) Do you observe improved exercise tolerance in your patients treated with ESAs?

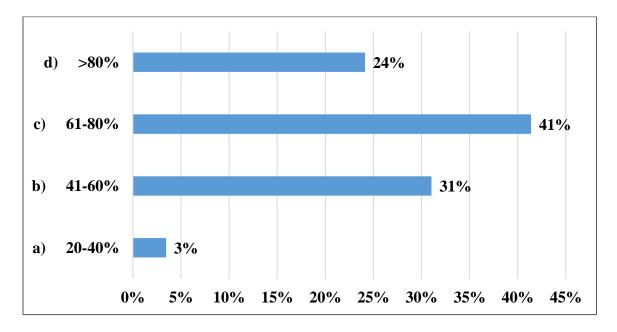
- a) Yes
- b) No


15) Have you used oral hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor in your patients with anemia?

- a) Yes
- b) No

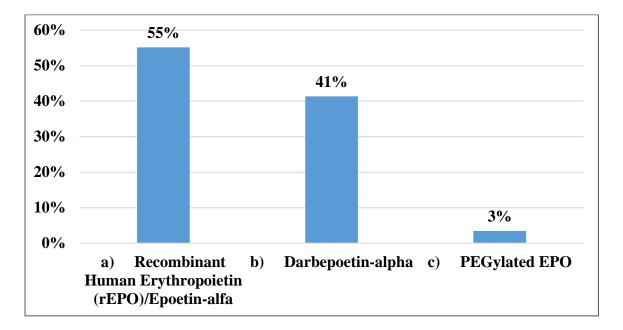
Survey Findings

1) In your clinical practice, what % of non-dialysis CKD patients present with anemia?


- a) 20-40%
- b) 41-60%
- c) 61-80%
- d) >80%

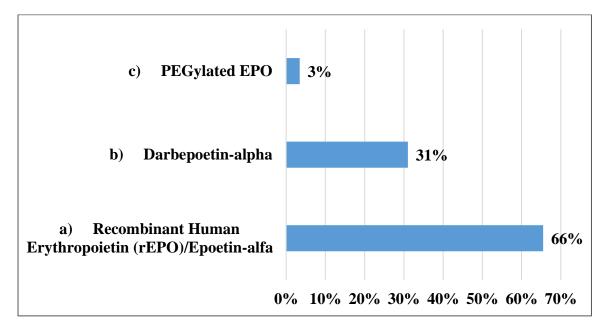
According to 55% of doctors, 41-60% of non-dialysis CKD patients present with anemia.

2) In your practice, what % of dialysis patients present with anemia?


- a) 20-40%
- b) 41-60%
- c) 61-80%
- d) >80%

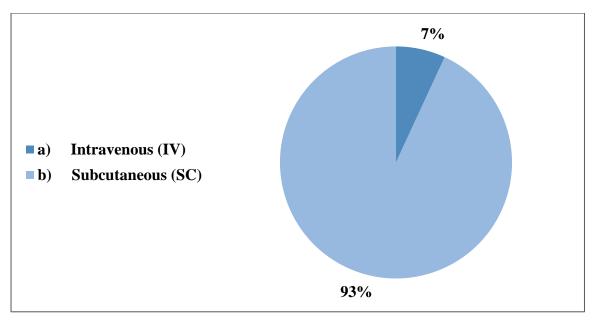
As per 41% of doctors, 61-80% of dialysis patients present with anemia.

3) What is your preferred type of Erythropoetin Stimulating Agent (ESA) in nondialysis dependant CKD patients having anemia?


- a) Recombinant Human Erythropoietin (rEPO)/Epoetin-alfa
- b) Darbepoetin-alpha
- c) PEGylated EPO

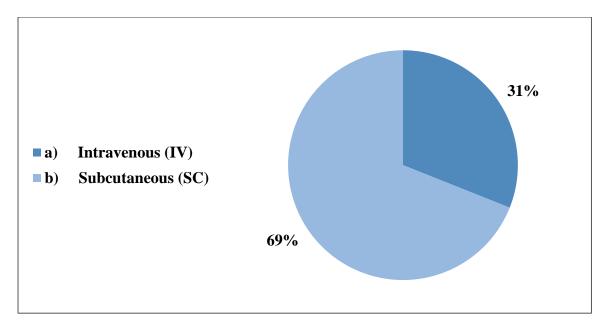
According to 55% of doctors, recombinant Human Erythropoietin (rEPO)/Epoetin-alfa is their preferred type of Erythropoetin Stimulating Agent (ESA) in nondialysis dependant CKD patients having anemia.

4) What is your preferred type of Erythropoetin Stimulating Agents (ESAs) in dialysis dependant CKD patients having anemia?


- a) Recombinant Human Erythropoietin (rEPO)/Epoetin-alfa
- b) Darbepoetin-alpha
- c) PEGylated EPO

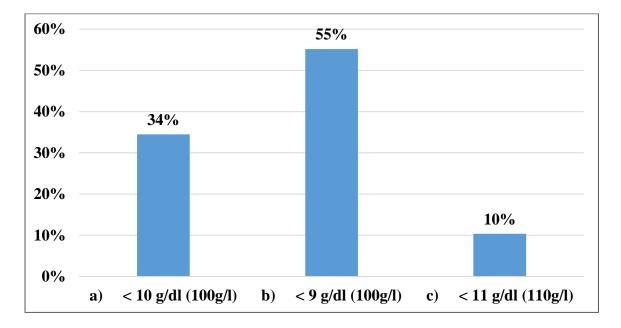
As per 66% of doctors, Recombinant Human Erythropoietin (rEPO)/Epoetin-alfa is their preferred type of Erythropoetin Stimulating Agents (ESAs) in dialysis dependant CKD patients having anemia.

5) Which route of administration for giving ESA is preferred by you in nondialysis CKD patients with anemia?


- a) Intravenous (IV)
- b) Subcutaneous (SC)

According to 93% of doctors, subcutaneous route of administration for giving ESA is preferred by them in nondialysis CKD patients with anemia.

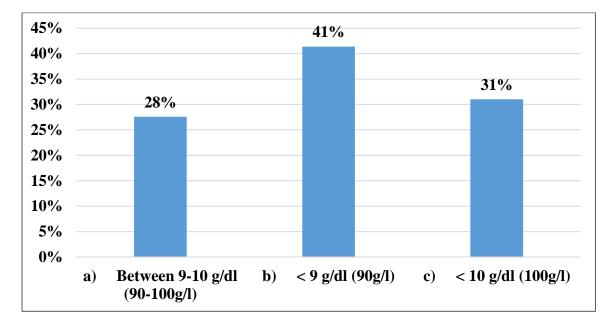
6) Which route of administration for giving ESA is preferred by you in dialysis CKD patients with anemia?


- a) Intravenous (IV)
- b) Subcutaneous (SC)

According to 69% of doctors, subcutaneous route of administration for giving ESA is preferred by them in dialysis CKD patients with anemia.

7) At what levels of Hemoglobin (Hb), do you initiate treatment with ESAs in non-dialysis CKD patients?

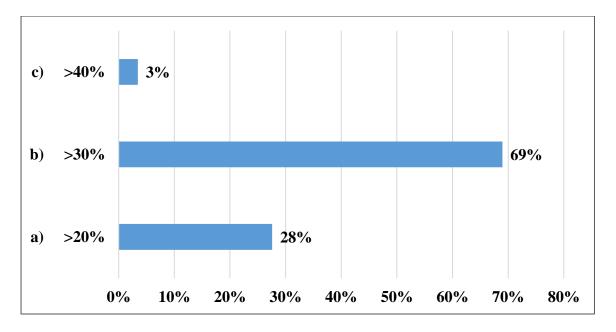
- a) < 10 g/dl (100g/l)
- b) < 9 g/dl (100 g/l)
- c) < 11 g/dl (110 g/l)



As per 55% of doctors, at < 9 g/dl (100g/l) level of hemoglobin, they initiate treatment with ESAs in non-dialysis CKD patients.

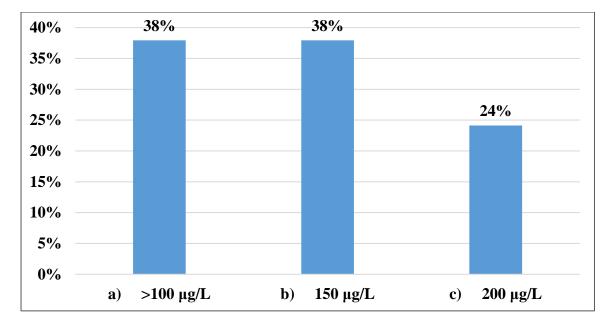
8) At what levels of Hemoglobin (Hb), do you initiate treatment with ESAs in dialysis

CKD patients?


- a) Between 9-10 g/dl (90-100g/l)
- b) < 9 g/dl (90g/l)
- c) < 10 g/dl (100 g/l)

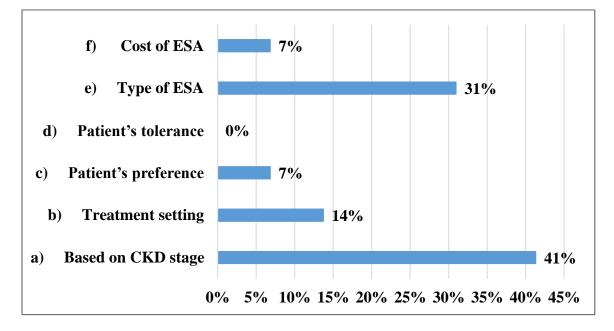
As per 41% of doctors, at < 9 g/dl (90g/l) levels of hemoglobin, they initiate treatment with ESAs in dialysis CKD patients.

9) At what % TSAT levels, do you initiate treatment with ESAs in your patients?


- a) >20%
- b) >30%
- c) >40%

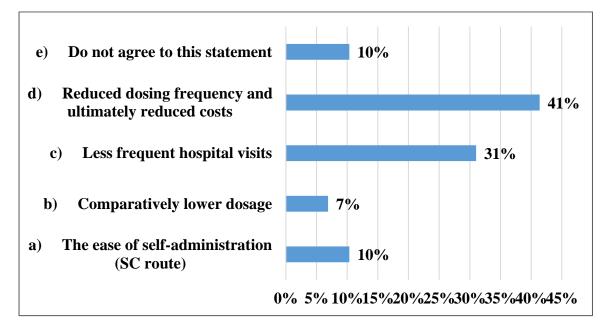
According to 69% of doctors, at >30% TSAT levels they initiate treatment with ESAs in your patients.

10) At what serum ferritin levels do you initiate the treatment with ESAs in your patients?


- a) >100 µg/L
- b) 150 μg/L
- c) 200 µg/L

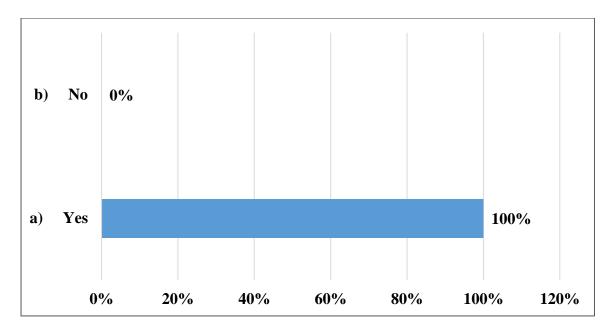
As per 38% of doctors, at >100 μ g/L or 150 μ g/L serum ferritin levels they initiate the treatment with ESAs in their patients.

11) How do you decide the frequency of ESA administration in your patient?


- a) Based on CKD stage
- b) Treatment setting
- c) Patient's preference
- d) Patient's tolerance
- e) Type of ESA
- f) Cost of ESA

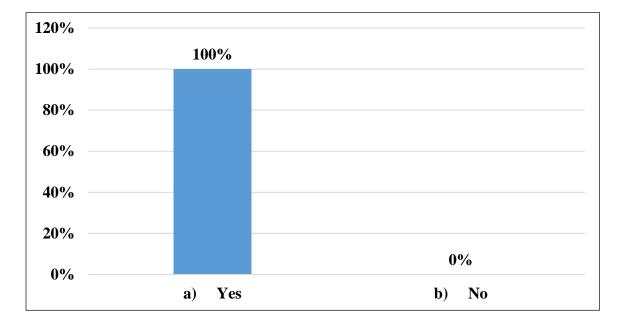
According to 41% of doctors, they decide the frequency of ESA administration in their patient based on CKD stage.

12) What according to you are the factors why darbepoetin is preferred in nondialysis dependant CKD patients?


- a) The ease of self-administration (SC route)
- b) Comparatively lower dosage
- c) Less frequent hospital visits
- d) Reduced dosing frequency and ultimately reduced costs
- e) Do not agree to this statement

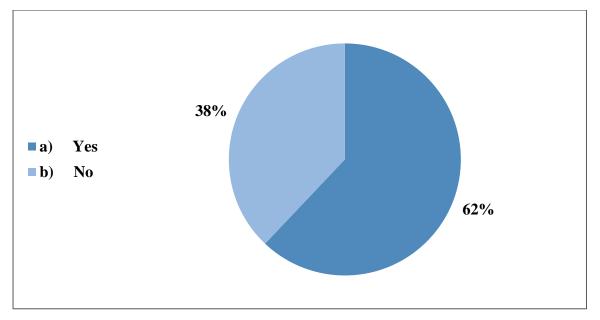
According to 41% of doctors, reduced dosing frequency and ultimately reduced costs are the factors why darbepoetin is preferred in nondialysis dependant CKD patients.

13) Do you observe reduced need of ESAs dose in your patients treated with IV iron/ferric carboxymaltose?


- a) Yes
- b) No

As per all the doctors, they have observed reduced need of ESAs dose in thier patients treated with IV iron/ferric carboxymaltose.

14) Do you observe improved exercise tolerance in your patients treated with ESAs?


- a) Yes
- b) No

According to all the doctors, they have observed improved exercise tolerance in their patients treated with ESAs.

15) Have you used oral hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor in your patients with anemia?

- a) Yes
- b) No

As per 62% of doctors, they have used oral hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor in their patients with anemia.

Summary

- According to 55% of doctors, 41-60% of non-dialysis CKD patients present with anemia.
- As per 41% of doctors, 61-80% of dialysis patients present with anemia.
- According to 55% of doctors, recombinant Human Erythropoietin (rEPO)/Epoetin-alfa is their preferred type of Erythropoetin Stimulating Agent (ESA) in nondialysis dependant CKD patients having anemia.
- As per 66% of doctors, Recombinant Human Erythropoietin (rEPO)/Epoetin-alfa is their preferred type of Erythropoetin Stimulating Agents (ESAs) in dialysis dependant CKD patients having anemia.
- According to 93% of doctors, subcutaneous route of administration for giving ESA is preferred by them in nondialysis CKD patients with anemia.
- According to 69% of doctors, subcutaneous route of administration for giving ESA is preferred by them in dialysis CKD patients with anemia.
- As per 55% of doctors, at < 9 g/dl (100g/l) level of hemoglobin, they initiate treatment with ESAs in non-dialysis CKD patients.
- As per 41% of doctors, at < 9 g/dl (90g/l) levels of hemoglobin, they initiate treatment with ESAs in dialysis CKD patients.
- According to 69% of doctors, at >30% TSAT levels they initiate treatment with ESAs in your patients.
- As per 38% of doctors, at >100 μ g/L or 150 μ g/L serum ferritin levels they initiate the treatment with ESAs in their patients.
- According to 41% of doctors, they decide the frequency of ESA administration in their patient based on CKD stage.
- According to 41% of doctors, reduced dosing frequency and ultimately reduced costs are the factors why darbepoetin is preferred in nondialysis dependant CKD patients.
- As per all the doctors, they have observed reduced need of ESAs dose in thier patients treated with IV iron/ferric carboxymaltose.
- According to all the doctors, they have observed improved exercise tolerance in their patients treated with ESAs.
- As per 62% of doctors, they have used oral hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor in their patients with anemia.

Consultant Opinion

Market Opportunities:

• ESA Therapy: There is a significant market opportunity for recombinant Human Erythropoietin (rEPO)/Epoetin-alfa in both non-dialysis and dialysis dependent CKD patients with anemia.

Value for Healthcare Professionals:

• **Preferred Administration Route:** Healthcare professionals prefer the subcutaneous route of administration for giving ESA in both non-dialysis and dialysis CKD patients with anemia due to its efficacy and convenience.

Adverse Effect Management:

• **Reduced Dosing Frequency:** Darbepoetin is preferred in non-dialysis CKD patients due to its reduced dosing frequency, leading to improved adherence and potentially reducing the risk of adverse effects.

Withdrawal Management:

• **Improved Exercise Tolerance:** ESA therapy has been associated with improved exercise tolerance in CKD patients, suggesting the potential for reducing the need for ESA dose over time with effective management.

Market Positioning:

• **Oral HIF-PH Inhibitors:** Healthcare professionals have used oral hypoxia-inducible factorprolyl hydroxylase (HIF-PH) inhibitors in patients with anemia, indicating a potential market opportunity for pharmaceutical companies to develop and market such agents.

Personalized Treatment Decisions:

• Initiation Criteria: Healthcare professionals initiate treatment with ESAs in CKD patients based on hemoglobin levels, transferrin saturation (TSAT) levels, and serum ferritin levels, highlighting the importance of personalized treatment decisions tailored to individual patient needs.

Improving Patient Outcomes:

• **Reduced ESA Dose with IV Iron:** Healthcare professionals have observed a reduced need for ESA dose in patients treated with IV iron/ferric carboxymaltose, suggesting potential benefits in improving patient outcomes and reducing healthcare costs.

In summary, there are opportunities for pharmaceutical companies to focus on ESA therapy, particularly rEPO/Epoetin-alfa, and to explore the development of oral HIF-PH inhibitors.

Healthcare professionals emphasize the importance of personalized treatment decisions, preferred administration routes, and the potential benefits of reduced dosing frequency and improved exercise tolerance in optimizing patient outcomes in CKD patients with anemia.

NOTES

NOTES

Developed by:

Weston Medical Education Foundation of India

CTS-77, Shop No.11, Swapna Siddhi CHS LTD, Akurli Road Near Malad Sahakari Bank Kandivali (E), Mumbai - 400101. M: 9322615653 I W: www.wmefi.co.in